4326: NOIP2015 运输计划
Time Limit: 30 Sec Memory Limit: 128 MB Submit: 1388 Solved: 860 [ ][ ][ ] Description
公元 2044 年,人类进入了宇宙纪元。L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球。小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之间不会产生任何干扰。为了鼓励科技创新, L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后,这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的物流公司的阶段性工作就完成了。如果小 P 可以自由选择将哪一条航道改造成虫洞, 试求出小 P 的物流公司完成阶段性工作所需要的最短时间是多少?
Input
第一行包括两个正整数 n,m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。接下来 n−1 行描述航道的建设情况,其中第 i 行包含三个整数 ai,bi 和 ti,表示第 i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。数据保证 1≤ai,bi≤n 且 0≤ti≤1000。接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j 个运输计划是从 uj 号星球飞往 vj号星球。数据保证 1≤ui,vi≤n
Output
输出文件只包含一个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。
Sample Input
6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5 Sample Output
HINT
将第 1 条航道改造成虫洞: 则三个计划耗时分别为:11,12,11,故需要花费的时间为 12。
将第 2 条航道改造成虫洞: 则三个计划耗时分别为:7,15,11,故需要花费的时间为 15。
将第 3 条航道改造成虫洞: 则三个计划耗时分别为:4,8,11,故需要花费的时间为 11。
将第 4 条航道改造成虫洞: 则三个计划耗时分别为:11,15,5,故需要花费的时间为 15。
将第 5 条航道改造成虫洞: 则三个计划耗时分别为:11,10,6,故需要花费的时间为 11。
故将第 3 条或第 5 条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为 11。
题目链接:
哇这题居然有权限可以做,真是感动啊……中文题题意就不说了,来西安集训的这几天老师介绍了这题,说是二分答案balabala,然后介绍了树上差分这种东西,差分嘛,我们都知道是利用前缀和来做的,这题如何二分答案?显然是把所有大于路径长度大于当前判定答案mid的路径取出,然后看这些路径的最大值减去最大可减少的一条边是否小于等于mid,为什么是交集?我们需要的是需要减少一条边来让所有的超出mid的边均小于等于mid,如果是非交集边显然总有至少一条路径仍然还是大于mid,那么我们如何求这些原路径长度大于mid交集边呢?
求边问题就成了求一些路径被选出来的所有边覆盖过,这里就用到了树上差分这种东西,对于所有选出来的边,进行$val_v++$、$val_u++$、$val_{lca(u,v)}-=2$,然后从子节点自下至上统计一个到根节点的前缀和,那么每一个节点的值就是它到父亲边被覆盖过的次数,但是每一次从儿子DFS到根复杂度很可能会爆啊,这里可以把节点用后序遍历存下来,使得父节点一定在子节点统计完再累加,就变成$O(n)$的求前缀和复杂度了……。把选边的过程改成先排序预处理+二分位置居然还慢了一秒,无语了。最后我想说namespace大法好啊,写起来酷炫又避免了同名函数的尴尬
代码:
#include #include #include #include #include #include #include #include #include #include #include